

МИНИСТЕРСТВО ПРОМЫШЛЕННОСТИ И ТОРГОВЛИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ (Росстандарт)

ПРИКАЗ

29 декабря 2018 г.

No.	281	6
No	201	v

Москва

Об утверждении государственной поверочной схемы для средств измерений мощности магнитных потерь магнитомягких материалов и магнитных характеристик магнитотвердых материалов

соответствии С Положением об эталонах единиц используемых в сфере государственного регулирования обеспечения единства утвержденным постановлением Правительства Федерации от 23 сентября 2010 г. № 734 «Об эталонах единиц величин, используемых в сфере государственного регулирования обеспечения единства измерений», Временным порядком разработки (пересмотра) и утверждения государственных поверочных схем, утвержденным приказом Федерального агентства по техническому регулированию и метрологии от 31 августа 2017 г. № 1832, и на основании Плана разработки (пересмотра) и утверждения государственных поверочных схем на 2018 год, утвержденного приказом Федерального агентства по техническому регулированию и метрологии от 29 декабря 2017 г. № 3021 (с изменениями, внесенными Федерального агентства ПО техническому регулированию и метрологии от 29 июня 2018 г. № 1342), приказываю:

- 1. Утвердить прилагаемую Государственную поверочную схему для средств измерений мощности магнитных потерь магнитомягких материалов и магнитных характеристик магнитотвердых материалов (далее ГПС).
- 2. Установить, что ГПС применяется для Государственного первичного эталона единиц мощности магнитных потерь, магнитной индукции постоянного магнитного поля в диапазоне от 0.1 до 2.5 Тл и магнитного потока в диапазоне от $1\cdot10^{-5}$ до $3\cdot10^{-2}$ Вб (ГЭТ 198-2017), для рабочих эталонов 1-го и 2-го разряда, а также средств измерений мощности магнитных потерь в магнитомягких материалах и магнитных характеристик магнитотвердых материалов и вводится в действие с 30 апреля 2019 г.
- 3. Управлению технического регулирования и стандартизации (Д.А.Тощев) совместно с ФГУП «УНИИМ» (С.В.Медведевских) обеспечить отмену национального стандарта Российской Федерации ГОСТ Р 8.799-2012

«Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений мощности магнитных потерь в магнитомягких материалах».

- 4. ФГУП «ВНИИФТРИ» (С.И.Донченко) внести информацию об утверждении ГПС в Федеральный информационный фонд по обеспечению единства измерений.
- 5. Управлению метрологии (Д.В.Гоголев) обеспечить размещение информации об утверждении ГПС на официальном сайте Федерального агентства по техническому регулированию и метрологии в информационнот телекоммуникационной сети «Интернет».
 - 6. Контроль за исполнением настоящего приказа оставляю за собой.

Заместитель Руководителя

С.С.Голубев

Подлинник электронного документа, подписанного ЭП, хранится в системе электронного документооборота Федеральное агентство по техническому регулированию и метрологии.

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 00E1036EE32711E880E9E0071BFC5DD276

Кому выдан: Голубев Сергей Сергеевич Действителен: с 08.11.2018 до 08.11.2019

УТВЕРЖДЕНА приказом Федерального агентства по техническому регулированию и метрологии от «29» декабря 2018 г. № 2816

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ МОЩНОСТИ МАГНИТНЫХ ПОТЕРЬ МАГНИТОМЯГКИХ МАТЕРИАЛОВ И МАГНИТНЫХ ХАРАКТЕРИСТИК МАГНИТОТВЕРДЫХ МАТЕРИАЛОВ

1. Область применения

Государственная поверочная схема для средств измерений мощности магнитных потерь магнитомягких материалов и магнитных характеристик магнитотвердых материалов устанавливает назначение государственного первичного эталона единиц мощности магнитных потерь, магнитной индукции постоянного магнитного поля в диапазоне от 0,1 до 2,5 Тл и магнитного потока в диапазоне от $1\cdot10^{-5}$ до $3\cdot10^{-2}$ Вб — Ватт, Тесла, Вебер (Вт, Тл, Вб) и порядок передачи единиц мощности магнитных потерь в диапазоне от 0,1 до 20,0 Вт, удельной мощности магнитных потерь в диапазоне от 0,1 до 20,0 Вт/кг, магнитной индукции постоянного магнитного поля в диапазоне от 0,1 до 2,5 Тл и магнитного потока в диапазоне от $1\cdot10^{-5}$ до $3\cdot10^{-2}$ Вб от государственного первичного эталона при помощи рабочих эталонов средствам измерений с указанием погрешностей и основных методов передачи единиц.

Графическая часть Государственной поверочной схемы для средств измерений мощности магнитных потерь магнитомягких материалов (далее – MMM) и магнитных характеристик магнитотвердых материалов (далее – MTM) представлена в приложении А.

2. Нормативные ссылки

В настоящей поверочной схеме использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.021-2015 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений массы»

ГОСТ Р 8.563-2009 «Государственная система обеспечения единства измерений. Методики (методы) измерений»

ГОСТ Р 8.763-2011 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины в диапазоне от $1 \cdot 10^{-9}$ до 50 м и длин волн в диапазоне от 0.2 до 50 мкм»

ГОСТ 10160-75 «Сплавы прецизионные магнитно-мягкие. Технические условия»

ГОСТ 12119.4-98 «Сталь электротехническая. Методы определения магнитных и электрических свойств. Метод измерения удельных магнитных потерь и действующего значения напряженности магнитного поля»

ГОСТ 12635-67 «Материалы магнитомягкие высокочастотные. Методы испытаний в диапазоне частот от $10~\mathrm{k}\Gamma$ ц до $1~\mathrm{M}\Gamma$ ц»

ГОСТ 21427.2-83 «Сталь электротехническая холоднокатаная изотропная тонколистовая. Технические условия»

ГОСТ 32482-2013 «Прокат тонколистовой холоднокатаный из электротехнической анизотропной стали для трансформаторов. Технические условия»

ГОСТ 33212-2014 «Прокат тонколистовой холоднокатаный из электротехнической изотропной стали. Технические условия»

ГОСТ Р 53934-2010 «Прокат тонколистовой холоднокатаный из электротехнической анизотропной стали. Технические условия»

3. Термины и определения

- 3.1. **Магнитные характеристики** МТМ: Обобщенное наименование группы величин, характеризующих магнитные свойства МТМ, под которыми понимается: магнитная индукция, магнитный поток, намагниченность, остаточная магнитная индукция, остаточная намагниченность, коэрцитивная сила по индукции, коэрцитивная сила по намагниченности, максимальное энергетическое произведение.
- 3.2. **Мощность магнитных потерь** (магнитные потери): Мощность, поглощаемая образцом МММ при воздействии на него периодического магнитного поля, Вт.
- 3.3. **Удельная мощность магнитных потерь** (удельные магнитные потери): Мощность магнитных потерь, отнесенная к единице массы МММ, Вт/кг.

4. Государственный первичный эталон

- 4.1. Государственный первичный эталон единиц мощности магнитных потерь, магнитной индукции постоянного магнитного поля в диапазоне от 0.1 до 2.5 Тл и магнитного потока в диапазоне от $1\cdot10^{-5}$ до $3\cdot10^{-2}$ Вб ГЭТ 198-2017 (далее государственный первичный эталон) предназначен для воспроизведения и хранения единиц мощности и удельной мощности магнитных потерь, магнитной индукции постоянного магнитного поля в диапазоне от 0.1 до 2.5 Тл и магнитного потока в диапазоне от $1\cdot10^{-5}$ до $3\cdot10^{-2}$ Вб и их передачи рабочим эталонам 1-го разряда в виде стандартных образцов магнитных потерь магнитомягких материалов и стандартных образцов магнитных свойств магнитотвердых материалов.
- 4.2. Государственный первичный эталон включает в себя следующие установки и средства измерений:

установку ЦИКЛ, предназначенную для воспроизведения и хранения единиц мощности магнитных потерь и удельной мощности магнитных потерь в образцах из магнитомягких материалов в виде полос размерами 280×30 мм и толщиной от 0,1 до 1,0 мм для аппарата Эпштейна и образцов тороидальной формы, изготовленных согласно требованиям ГОСТ 12119.4, ГОСТ 10160, ГОСТ 12635, ГОСТ 21427.2, ГОСТ 32482, ГОСТ 33212 в диапазоне частот от 50 до $2 \cdot 10^5$ Гц;

установку ЦИКЛ-2, предназначенную для воспроизведения и хранения единиц мощности магнитных потерь и удельной мощности магнитных потерь в образцах в виде листов из электротехнической стали длиной от 500 до 600 мм, шириной 500 мм, толщиной от 0,2 до 1,0 мм и в образцах кольцевой формы, изготовленных согласно требованиям ГОСТ 12119.4, ГОСТ 10160, ГОСТ Р 53934 в диапазоне частот от 50 до 1000 Гц;

установку ЦИКЛ-3, предназначенную для хранения и воспроизведения единиц магнитной индукции постоянного магнитного поля в диапазоне от 0,1

до 2,5 Тл и магнитного потока в диапазоне от $1\cdot 10^{-5}$ до $3\cdot 10^{-2}$ Вб в образцах магнитотвердых материалов;

средства измерений (далее – СИ) длины в диапазоне от 1 до $1\cdot 10^3$ мм с абсолютной погрешностью \pm (0,10 – 0,50) мм по ГОСТ Р 8.763 и массы в диапазоне от 0,1 до $2,0\cdot 10^3$ г с абсолютной погрешностью \pm 0,01 г по ГОСТ 8.021;

стандартные образцы удельных магнитных потерь из магнитомягких материалов в виде листов, полос и колец;

стандартные образцы магнитных характеристик из магнитотвердых материалов;

эталоны сравнения в виде катушек поля.

4.3. Государственный первичный эталон обеспечивает воспроизведение единиц мощности магнитных потерь, магнитной индукции постоянного магнитного поля в диапазоне от 0.1 до 2.5 Тл и магнитного потока в диапазоне от $1\cdot10^{-5}$ до $3\cdot10^{-2}$ Вб. Значения метрологических характеристик приведены в таблице 1.

Таблица 1 — Метрологические характеристики государственного первичного эталона

Метрологическая характеристика	Значение
Диапазон воспроизведения мощности магнитных потерь, Вт	от 0,1 до 20,0
Диапазон воспроизведения удельной мощности магнитных потерь, Вт/кг	от 0,1 до 200,0
Диапазон частот перемагничивания, Гц	от 50 до 2·10 ⁵
Относительное среднее квадратическое отклонение (СКО) при воспроизведении мощности магнитных потерь (удельной мощности магнитных потерь) при 10 независимых измерениях	от $0.5 \cdot 10^{-3}$ до $1.0 \cdot 10^{-3}$
Относительная неисключенная систематическая погрешность при воспроизведении мощности магнитных потерь (удельной мощности магнитных потерь) (<i>P</i> =0,95)	от 1,0·10⁻³ до 5,0·10⁻³
Относительная стандартная неопределенность при воспроизведении мощности магнитных потерь (удельной мощности магнитных потерь) типа А при 10 независимых измерениях	от 0,5·10⁻³ до 1,0·10⁻³
Относительная стандартная неопределенность при воспроизведении мощности магнитных потерь (удельной мощности магнитных потерь) типа В	от 0,3·10⁻³ до 3,5·10⁻³
Диапазон воспроизведения магнитной индукции постоянного магнитного поля, Тл	от 0,1 до 2,5
Относительное СКО при воспроизведении магнитной индукции за 10 мин, не более	9,0·10 ⁻⁷

Продолжение таблицы 1

Метрологическая характеристика	Значение
Относительная неисключённая систематическая	
погрешность при воспроизведении магнитной	
индукции (P =0,95) в диапазоне:	
от 0,1 до 2,0 Тл включ.	от 1,7·10 ⁻⁵ до 5,2·10 ⁻⁵
св. 2,0 до 2,5 Тл включ., не более	$1.8 \cdot 10^{-3}$
Относительная стандартная неопределенность при	_
воспроизведении магнитной индукции постоянного	$9.0 \cdot 10^{-7}$
магнитного поля типа А за 10 мин, не более	
Относительная стандартная неопределенность при	
воспроизведении магнитной индукции постоянного	
магнитного поля типа В в диапазоне:	
от 0,1 до 2,0 Тл включ.	от 1,0·10 ⁻⁵ до 3,0·10 ⁻⁵
св. 2,0 до 2,5 Тл включ., не более	$1,0\cdot 10^{-3}$
Диапазон воспроизведения магнитного потока, Вб	от 1·10 ⁻⁵ до 3·10 ⁻²
Относительное СКО при воспроизведении магнитного	$8.0 \cdot 10^{-4}$
потока, при 10 независимых измерениях, не более	8,0.10
Относительная неисключенная систематическая	
погрешность при воспроизведении магнитного потока	от 2,6·10 ⁻⁴ до 1,2·10 ⁻³
(P=0.95)	
Относительная стандартная неопределенность при	
воспроизведении магнитного потока типа А при 10	$8,0\cdot 10^{-4}$
независимых измерениях, не более	
Относительная стандартная неопределенность при	от 1,5·10 ⁻⁴ до 7,0·10 ⁻⁴
воспроизведении магнитного потока типа В	от 1,5 то до 7,0 то

- 4.4. Для обеспечения воспроизведения единиц мощности магнитных потерь, удельной мощности магнитных потерь, магнитной индукции постоянного магнитного поля, магнитного потока с указанными точностными характеристиками должны соблюдаться правила хранения и применения государственного первичного эталона, утвержденные в установленном порядке.
- 4.5 Государственный первичный эталон применяют для передачи единиц: мощности магнитных потерь и удельной мощности магнитных потерь рабочим эталонам 1-го разряда (стандартным образцам мощности магнитных потерь и удельной мощности магнитных потерь) методом прямых измерений;

магнитной индукции постоянного магнитного поля в диапазоне от 0,1 до 2,5 Тл и магнитного потока в диапазоне от $1\cdot 10^{-5}$ до $3\cdot 10^{-2}$ Вб рабочим эталонам 1-го разряда (стандартным образцам магнитных характеристик магнитотвердых материалов) методом прямых измерений.

5. Рабочие эталоны

5.1. Рабочие эталоны 1-го разряда единиц мощности магнитных потерь и удельной мощности магнитных потерь

- 5.1.1. В качестве рабочих эталонов 1-го разряда единиц мощности магнитных потерь в диапазоне от 0,1 до 20 Вт и удельной мощности магнитных потерь в диапазоне от 0,1 до 200 Вт/кг используют стандартные образцы мощности магнитных потерь (далее СО ММП) и стандартные образцы удельной мощности магнитных потерь (далее СО УММП).
- 5.1.2. Для рабочих эталонов 1-го разряда доверительные границы относительной погрешности δ_0 при доверительной вероятности 0,95 не должны превышать для мощности магнитных потерь \pm (0,3 1) % в зависимости от частоты перемагничивания, для удельной мощности магнитных потерь значений \pm (0,3 1,2) % в зависимости от частоты перемагничивания.
- 5.1.3. Рабочие эталоны 1-го разряда в виде стандартных образцов мощности магнитных потерь и в виде стандартных образцов удельной мощности магнитных потерь предназначены для передачи единиц мощности магнитных потерь и удельной мощности магнитных потерь рабочим эталонам 2-го разряда и средствам измерений методом прямых измерений.

5.2. Рабочие эталоны 1-го разряда единиц магнитной индукции постоянного магнитного поля в диапазоне от 0,1 до 2,5 T л и магнитного потока в диапазоне от $1\cdot10^{-5}$ до $3\cdot10^{-2}$ Вб

5.2.1. В качестве рабочих эталонов 1-го разряда единиц магнитной индукции постоянного магнитного поля в диапазоне от 0.1 до 2.5 Тл и магнитного потока в диапазоне от $1\cdot10^{-5}$ до $3\cdot10^{-2}$ Вб используют стандартные образцы магнитных характеристик магнитотвердых материалов, определяемых по результатам измерений магнитного потока и индукции магнитного поля (метрологические характеристики приведены в таблице 2).

Таблица 2 — Метрологические характеристики рабочих эталонов 1-го разряда — стандартных образцов магнитных характеристик магнитотвердых материалов

Наименование величины, единица измерения	Интервал значений	Доверительные границы относительной погрешности δ_0 (при $P = 0.95$), % (±)
Магнитная индукция, В, Тл	0,1-2,5	0,2-2
Магнитный поток, Ф, Вб	$1 \cdot 10^{-5} - 3 \cdot 10^{-2}$	0,3-2
Намагниченность, М, кА/м	1 - 2000	0,5-2
Остаточная магнитная индукция, В _г ,Тл	0,1-2,5	0,5-2
Остаточная намагниченность, M _r , кА/м	1 – 2000	0,5-2
Коэрцитивная сила по индукции, H_{cB} , к $A/м$	80 – 1890	1 – 3
Коэрцитивная сила по намагниченности, H_{cM} , кА/м	80 – 1890	1 – 3

Продолжение таблицы 2

Наименование величины, единица измерения	Интервал значений	Доверительные границы относительной погрешности δ_0 (при $P=0.95$), $\%$ (\pm)
Максимальное энергетическое произведение, $(BH)_{max}$, $\kappa Д ж/м^3$	0,8 – 510	1 – 4

5.2.2. Рабочие эталоны 1-го разряда в виде стандартных образцов магнитных характеристик магнитотвердых материалов предназначены для передачи единиц магнитных характеристик магнитотвердых материалов средствам измерений методом прямых измерений.

5.3. Рабочие эталоны 2-го разряда единиц удельной мощности магнитных потерь

- 5.3.1. В качестве рабочих эталонов 2-го разряда единиц удельной мощности магнитных потерь в диапазоне от 0,1 до 100 Вт/кг используют установки измерительные, имеющие следующие метрологические характеристики: диапазон измерений от 0,1 до 100 Вт/кг, доверительные границы относительной погрешности δ_0 при доверительной вероятности 0,95 не должны превышать \pm (0,6-3) % в зависимости от частоты перемагничивания.
- 5.3.2. Рабочие эталоны 2-го разряда предназначены для передачи единиц удельной мощности магнитных потерь средствам измерений сличением при помощи компаратора.

6. Средства измерений

6.1. В качестве средств измерений мощности магнитных потерь (далее – ММП) и удельной мощности магнитных потерь (далее – УММП) применяют следующие измерительные установки:

установки для измерения ММП в диапазоне от 0,1 до 20,0 Вт и установки для измерения УММП в диапазоне от 0,1 до 200,0 Вт/кг образцов МММ кольцевой формы в диапазоне частот от 50 до $2\cdot10^5$ Гц, образцы изготовлены в соответствии с требованиями ГОСТ 12119.4, ГОСТ 12635, ГОСТ 10160;

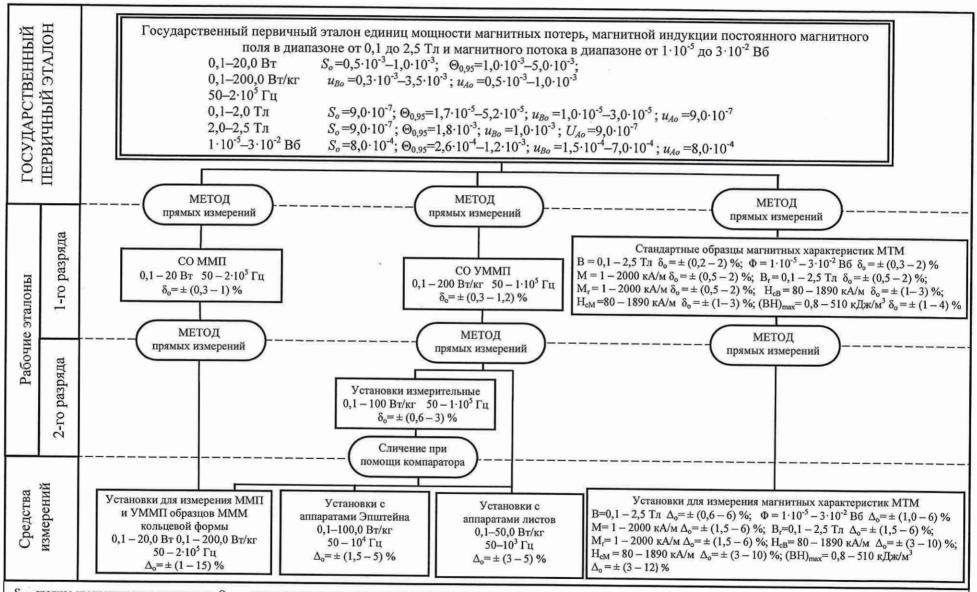
установки с аппаратами Эпштейна, предназначенные для измерения УММП в диапазоне от 0,1 до 100,0 Вт/кг в образцах электротехнической стали в виде набора полос длиной от 280 до 310 мм, шириной 30 мм, толщиной от 0,1 до 1,0 мм, массой от 0,5 до 1,0 кг (образцах для аппарата Эпштейна) в диапазоне частот от 50 до 10000 Γ ц;

установки с аппаратами листов, предназначенные для измерения УММП в диапазоне от 0.1 до 50.0 Вт/кг в образцах электротехнической стали в виде листов длиной от 500 до 1500 мм, шириной от 250 до 750 мм, толщиной от 0.2 до 1.0 мм, массой от 0.5 до 1.5 кг (образцах для аппарата листов) в диапазоне частот от 50 до 1000 Гц.

6.2. Пределы допускаемых относительных погрешностей Δ_0 :

установок для измерения ММП и УММП образцов МММ кольцевой формы составляют $\pm (1-15)$ % в зависимости от испытуемого материала, амплитуды магнитной индукции и частоты перемагничивания;

установок с аппаратами Эпштейна составляют $\pm (1,5-5)$ % в зависимости от амплитуды магнитной индукции и частоты перемагничивания;


установок с аппаратами листов составляют $\pm (3-5)$ %.

6.3. В качестве средств измерений магнитной индукции постоянного магнитного поля в диапазоне от 0.1 до 2.5 Тл и магнитного потока в диапазоне от $1 \cdot 10^{-5}$ до $3 \cdot 10^{-2}$ Вб используют:

установки для измерения магнитных характеристик МТМ. Диапазоны измерений: магнитной индукции (далее - B) от 0,1 до 2,5 Тл, $\Delta_0 = \pm (0,6-6)$ %; магнитного потока (далее - Φ) от $1\cdot 10^{-5}$ до $3\cdot 10^{-2}$ Вб, $\Delta_0 = \pm (1,0-6)$ %; намагниченности (далее - M) от 1 до 2000 кА/м, $\Delta_0 = \pm (1,5-6)$ %; остаточной магнитной индукции (далее - M_r) от 0,1 до 2,5 Тл, $\Delta_0 = \pm (1,5-6)$ %; остаточной намагниченности (далее - M_r) от 1 до 2000 кА/м, $\Delta_0 = \pm (1,5-6)$ %; коэрцитивной силы по индукции (далее - H_{cB}) от 80 до 1890 кА/м, $\Delta_0 = (3-10)$ %; коэрцитивной силы по намагниченности (далее - H_{cM}) от 80 до 1890 кА/м, $\Delta_0 = \pm (3-10)$ %; максимального энергетического произведения (далее - $(BH)_{max}$) от 0,8 до 510 кДж/м³, $\Delta_0 = \pm (3-12)$ %.

6.4. Соотношение показателей точности применяемого при поверке эталона и поверяемого средства измерений не должно превышать 1/2.

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ МОЩНОСТИ МАГНИТНЫХ ПОТЕРЬ МАГНИТОМЯГКИХ МАТЕРИАЛОВ И МАГНИТНЫХ ХАРАКТЕРИСТИК МАГНИТОТВЕРДЫХ МАТЕРИАЛОВ

